Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Hyg Environ Health Adv ; 7: 100061, 2023 Sep.
Article in English | MEDLINE | ID: covidwho-2324426

ABSTRACT

This study aimed to provide environmental surveillance data for evaluating the risk of acquiring SARS-CoV-2 in public areas with high foot traffic in a university. Air and surface samples were collected at a university that had the second highest number of COVID-19 cases among public higher education institutions in the U.S. during Fall 2020. A total of 60 samples were collected in 16 sampling events performed during Fall 2020 and Spring 2021. Nearly 9800 students traversed the sites during the study period. SARS-CoV-2 was not detected in any air or surface samples. The university followed CDC guidance, including COVID-19 testing, case investigations, and contact tracing. Students, faculty, and staff were asked to maintain physical distancing and wear face coverings. Although COVID-19 cases were relatively high at the university, the possibility of acquiring SARS-CoV-2 infections at the sites tested was low.

2.
JMIR Form Res ; 7: e39409, 2023 Apr 21.
Article in English | MEDLINE | ID: covidwho-2302523

ABSTRACT

BACKGROUND: In the wake of the SARS-CoV-2 pandemic, scientists have scrambled to collect and analyze SARS-CoV-2 genomic data to inform public health responses to COVID-19 in real time. Open source phylogenetic and data visualization platforms for monitoring SARS-CoV-2 genomic epidemiology have rapidly gained popularity for their ability to illuminate spatial-temporal transmission patterns worldwide. However, the utility of such tools to inform public health decision-making for COVID-19 in real time remains to be explored. OBJECTIVE: The aim of this study is to convene experts in public health, infectious diseases, virology, and bioinformatics-many of whom were actively engaged in the COVID-19 response-to discuss and report on the application of phylodynamic tools to inform pandemic responses. METHODS: In total, 4 focus groups (FGs) occurred between June 2020 and June 2021, covering both the pre- and postvariant strain emergence and vaccination eras of the ongoing COVID-19 crisis. Participants included national and international academic and government researchers, clinicians, public health practitioners, and other stakeholders recruited through purposive and convenience sampling by the study team. Open-ended questions were developed to prompt discussion. FGs I and II concentrated on phylodynamics for the public health practitioner, while FGs III and IV discussed the methodological nuances of phylodynamic inference. Two FGs per topic area to increase data saturation. An iterative, thematic qualitative framework was used for data analysis. RESULTS: We invited 41 experts to the FGs, and 23 (56%) agreed to participate. Across all the FG sessions, 15 (65%) of the participants were female, 17 (74%) were White, and 5 (22%) were Black. Participants were described as molecular epidemiologists (MEs; n=9, 39%), clinician-researchers (n=3, 13%), infectious disease experts (IDs; n=4, 17%), and public health professionals at the local (PHs; n=4, 17%), state (n=2, 9%), and federal (n=1, 4%) levels. They represented multiple countries in Europe, the United States, and the Caribbean. Nine major themes arose from the discussions: (1) translational/implementation science, (2) precision public health, (3) fundamental unknowns, (4) proper scientific communication, (5) methods of epidemiological investigation, (6) sampling bias, (7) interoperability standards, (8) academic/public health partnerships, and (9) resources. Collectively, participants felt that successful uptake of phylodynamic tools to inform the public health response relies on the strength of academic and public health partnerships. They called for interoperability standards in sequence data sharing, urged careful reporting to prevent misinterpretations, imagined that public health responses could be tailored to specific variants, and cited resource issues that would need to be addressed by policy makers in future outbreaks. CONCLUSIONS: This study is the first to detail the viewpoints of public health practitioners and molecular epidemiology experts on the use of viral genomic data to inform the response to the COVID-19 pandemic. The data gathered during this study provide important information from experts to help streamline the functionality and use of phylodynamic tools for pandemic responses.

3.
Disaster Med Public Health Prep ; : 1-8, 2022 May 02.
Article in English | MEDLINE | ID: covidwho-1908013

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic continues to present unique public health challenges both within the United States and across the globe. Institutions of higher learning are tasked with preventing and responding to COVID-19 on campus while also considering implications for the surrounding communities. The process of re-opening campus, whether at full or partial capacity, has tasked these institutions with overcoming complex challenges associated with balancing the resumption of campus operations while simultaneously protecting university affiliates and surrounding community members from COVID-19 through robust surveillance, contact tracing, and testing efforts. Here, we provide a concise outline related to the development and implementation of the comprehensive and sustainable COVID-19 surveillance program at the University of Florida. We also critically discuss the successes and pitfalls of this program while also providing recommendations for the development of similar programs in the future.

4.
J Am Coll Health ; : 1-4, 2022 Jun 21.
Article in English | MEDLINE | ID: covidwho-1895658

ABSTRACT

Background: We evaluate the public health surveillance program, Screen, Test, and Protect (STP) designed to control and prevent COVID-19 at a large academic university in the United States. Methods: STP was established at the University of Florida in May 2020. This report details STP's full-time workforce, centralized database, and testing and vaccination programs. We evaluate the program's success in controlling COVID-19 during the 2020-2021 academic school year. Results: COVID-19 cases rose among the campus community in the first few weeks of campus reopening in Fall 2020. Test positivity levels returned to prefall semester levels within one month, however. A few additional, yet smaller, waves occurred during the 2020-2021 school year and were successfully controlled without any campus-wide closures. Conclusions: This program may serve as a framework for other institutions managing the ongoing COVID-19 crisis, in addition to setting the standard for programmatic management of future emerging infectious diseases at universities.

5.
Clin Infect Dis ; 75(9): 1618-1627, 2022 Oct 29.
Article in English | MEDLINE | ID: covidwho-1868259

ABSTRACT

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Delta variant has caused a dramatic resurgence in infections in the United Sates, raising questions regarding potential transmissibility among vaccinated individuals. METHODS: Between October 2020 and July 2021, we sequenced 4439 SARS-CoV-2 full genomes, 23% of all known infections in Alachua County, Florida, including 109 vaccine breakthrough cases. Univariate and multivariate regression analyses were conducted to evaluate associations between viral RNA burden and patient characteristics. Contact tracing and phylogenetic analysis were used to investigate direct transmissions involving vaccinated individuals. RESULTS: The majority of breakthrough sequences with lineage assignment were classified as Delta variants (74.6%) and occurred, on average, about 3 months (104 ±â€…57.5 days) after full vaccination, at the same time (June-July 2021) of Delta variant exponential spread within the county. Six Delta variant transmission pairs between fully vaccinated individuals were identified through contact tracing, 3 of which were confirmed by phylogenetic analysis. Delta breakthroughs exhibited broad viral RNA copy number values during acute infection (interquartile range, 1.2-8.64 Log copies/mL), on average 38% lower than matched unvaccinated patients (3.29-10.81 Log copies/mL, P < .00001). Nevertheless, 49% to 50% of all breakthroughs, and 56% to 60% of Delta-infected breakthroughs exhibited viral RNA levels above the transmissibility threshold (4 Log copies/mL) irrespective of time after vaccination. CONCLUSIONS: Delta infection transmissibility and general viral RNA quantification patterns in vaccinated individuals suggest limited levels of sterilizing immunity that need to be considered by public health policies. In particular, ongoing evaluation of vaccine boosters should specifically address whether extra vaccine doses curb breakthrough contribution to epidemic spread.


Subject(s)
COVID-19 , Viral Vaccines , Humans , SARS-CoV-2/genetics , RNA, Viral/genetics , Phylogeny , Florida/epidemiology , COVID-19/epidemiology , COVID-19/prevention & control , Vaccination
6.
J Med Virol ; 94(7): 3192-3202, 2022 07.
Article in English | MEDLINE | ID: covidwho-1750405

ABSTRACT

The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VOC) has raised questions regarding vaccine protection against SARS-CoV-2 infection, transmission, and ongoing virus evolution. Twenty-three mildly symptomatic "vaccination breakthrough" infections were identified as early as January 2021 in Alachua County, Florida, among individuals fully vaccinated with either the BNT162b2 (Pfizer) or the Ad26 (Janssen/J&J) vaccines. SARS-CoV-2 genomes were successfully generated for 11 of the vaccine breakthroughs, and 878 individuals in the surrounding area and were included for reference-based phylogenetic investigation. These 11 individuals were characterized by infection with VOCs, but also low-frequency variants present within the surrounding population. Low-frequency mutations were observed, which have been more recently identified as mutations of interest owing to their location within targeted immune epitopes (P812L) and association with increased replicative capacity (L18F). We present these results to posit the nature of the efficacy of vaccines in reducing symptoms as both a blessing and a curse-as vaccination becomes more widespread and self-motivated testing reduced owing to the absence of severe symptoms, we face the challenge of early recognition of novel mutations of potential concern. This case study highlights the critical need for continued testing and monitoring of infection and transmission among individuals regardless of vaccination status.


Subject(s)
COVID-19 , SARS-CoV-2 , BNT162 Vaccine , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Phylogeny , SARS-CoV-2/genetics
7.
BMJ Open Qual ; 11(1)2022 02.
Article in English | MEDLINE | ID: covidwho-1673451

ABSTRACT

A high throughput COVID-19 vaccination site was created using Lean principles and tools. Mass-vaccination sites can achieve high output by creating a standard physical design for workspaces and standardised work protocols, and by timing each step in the vaccination process to create a value stream map that can identify and remove all wasteful steps. Reliability of the vaccination process can be assured by creating a visual checklist that monitors the individual steps as well as by building in second checks by downstream personnel. Finally, productivity can be closely monitored by recording the start and completion time for each vaccination and plotting run charts. With 78 personnel working efficiently and effectively together, a maximum throughput of 5024 injections over 10 hours was achieved. As compared with other published COVID-19 mass-vaccination sites, our site attained threefold-fourfold higher productivity. We share our approach to encourage others to reproduce our vaccination system.


Subject(s)
COVID-19 , COVID-19 Vaccines , Humans , Reproducibility of Results , SARS-CoV-2 , Vaccination
8.
Endosc Int Open ; 9(8): E1276-E1282, 2021 Aug.
Article in English | MEDLINE | ID: covidwho-1376222

ABSTRACT

Background and study aims The clinical significance of SARS-CoV-2 RNA in the stool remains unclear. We aimed to determine whether SARS-CoV-2 is detected via real-time reverse transcriptase polymerase chain reaction (rRT-PCR) in the gastrointestinal tracts of patients scheduled for endoscopy and if the virus obtained from these clinical specimens could be isolated in culture. Patients and methods All patients underwent symptom screening and had negative nasopharyngeal testing for SARS-CoV-2 within 72 hours of their scheduled procedure. Study samples were collected via nasopharyngeal swab, rectal swab, and fluid from the upper gastrointestinal tract and/or colon based on their endoscopic procedure(s). Samples were tested for SARS-CoV-2 via rRT-PCR. SARS-CoV-2 positive specimens were isolated and cultured in Vero-E6 cells. Results 243 patients (mean age 63.1 years;54.3 % men) were enrolled from July 15, 2020 to September 2, 2020. SARS-CoV-2 testing was performed from 242 (99.6 %) nasopharyngeal, 243 (100 %) rectal, 183 (75.3 %) upper gastrointestinal tract and 73 (30 %) colon samples. SARS-CoV-2 RNA was detected in the nasopharynx and gastrointestinal specimens in one patient (0.4 %). After a 14-day incubation period, there was no evidence of virus growth in cells incubated with any of these specimens. Conclusions SARS-CoV-2 was rarely detected in the gastrointestinal tract of patients with negative nasopharyngeal testing prior to endoscopy. No live virus was detected by culture, further highlighting that presence of viral genome on its own is not sufficient proof of infectivity. PCR-based screening provides limited insight into virus infectivity and its results should be interpreted carefully as to avoid unnecessary delays in clinical care or inadvertent risk exposure.

9.
Int J Infect Dis ; 108: 212-216, 2021 Jul.
Article in English | MEDLINE | ID: covidwho-1364082

ABSTRACT

OBJECTIVE: To determine if viable virus could be isolated from the air within a car driven by a patient infected with SARS-CoV-2, and to assess the size range of the infectious particles. METHODS: We used a Sioutas personal cascade impactor sampler (PCIS) to screen for SARS-CoV-2 in a car driven by a COVID-19 patient. The patient, who had only mild illness without fever or cough and was not wearing a mask, drove the car for 15 min with the air conditioning turned on and windows closed. The PCIS was clipped to the sun-visor above the front passenger seat and was retrieved from the car two hours after completion of the drive. RESULTS: SARS-CoV-2 was detectable at all PCIS stages by PCR and was cultured from the section of the sampler collecting particles in the 0.25-0.50 µm size range. CONCLUSIONS: Our data highlight the potential risk of SARS-CoV-2 transmission by minimally symptomatic persons in the closed space inside of a car and suggest that a substantial component of that risk is via aerosolized virus.


Subject(s)
COVID-19 , SARS-CoV-2 , Aerosols , Automobiles , Cough , Humans
11.
MMWR Morb Mortal Wkly Rep ; 70(6): 208-211, 2021 Feb 12.
Article in English | MEDLINE | ID: covidwho-1079854

ABSTRACT

Approximately 41% of adults aged 18-24 years in the United States are enrolled in a college or university (1). Wearing a face mask can reduce transmission of SARS-CoV-2, the virus that causes coronavirus disease 2019 (COVID-19) (2), and many colleges and universities mandate mask use in public locations and outdoors when within six feet of others. Studies based on self-report have described mask use ranging from 69.1% to 86.1% among adults aged 18-29 years (3); however, more objective measures are needed. Direct observation by trained observers is the accepted standard for monitoring behaviors such as hand hygiene (4). In this investigation, direct observation was used to estimate the proportion of persons wearing masks and the proportion of persons wearing masks correctly (i.e., covering the nose and mouth and secured under the chin*) on campus and at nearby off-campus locations at six rural and suburban universities with mask mandates in the southern and western United States. Trained student observers recorded mask use for up to 8 weeks from fixed sites on campus and nearby. Among 17,200 observed persons, 85.5% wore masks, with 89.7% of those persons wearing the mask correctly (overall correct mask use: 76.7%). Among persons observed indoors, 91.7% wore masks correctly. The proportion correctly wearing masks indoors varied by mask type, from 96.8% for N95-type masks and 92.2% for cloth masks to 78.9% for bandanas, scarves, and similar face coverings. Observed indoor mask use was high at these six universities with mask mandates. Colleges and universities can use direct observation findings to tailor training and messaging toward increasing correct mask use.


Subject(s)
Masks/statistics & numerical data , Masks/standards , Public Health/legislation & jurisprudence , Students/psychology , Universities/legislation & jurisprudence , Adolescent , COVID-19/epidemiology , COVID-19/prevention & control , Humans , Students/statistics & numerical data , United States/epidemiology , Young Adult
12.
medRxiv ; 2020 Aug 04.
Article in English | MEDLINE | ID: covidwho-721072

ABSTRACT

Background - There currently is substantial controversy about the role played by SARS-CoV-2 in aerosols in disease transmission, due in part to detections of viral RNA but failures to isolate viable virus from clinically generated aerosols. Methods - Air samples were collected in the room of two COVID-19 patients, one of whom had an active respiratory infection with a nasopharyngeal (NP) swab positive for SARS-CoV-2 by RT-qPCR. By using VIVAS air samplers that operate on a gentle water-vapor condensation principle, material was collected from room air and subjected to RT-qPCR and virus culture. The genomes of the SARS-CoV-2 collected from the air and of virus isolated in cell culture from air sampling and from a NP swab from a newly admitted patient in the room were sequenced. Findings - Viable virus was isolated from air samples collected 2 to 4.8m away from the patients. The genome sequence of the SARS-CoV-2 strain isolated from the material collected by the air samplers was identical to that isolated from the NP swab from the patient with an active infection. Estimates of viable viral concentrations ranged from 6 to 74 TCID50 units/L of air. Interpretation - Patients with respiratory manifestations of COVID-19 produce aerosols in the absence of aerosol-generating procedures that contain viable SARS-CoV-2, and these aerosols may serve as a source of transmission of the virus.

SELECTION OF CITATIONS
SEARCH DETAIL